martes, 29 de marzo de 2016

Escalas de Temperatura


escalas de la temperatura

La temperatura es el nivel de calor en un gas, líquido, o sólido. Tres escalas sirven comúnmente para medir la temperatura. Las escalas de Celsius y de Fahrenheit son las más comunes. La escala de Kelvin es primordialmente usada en experimentos científicos.
Temperature Scales, Thermostat

Escala Celsius

La escala Celsius fue inventada en 1742 por el astrónomo sueco Andrés Celsius. Esta escala divide el rango entre las temperaturas de congelación y de ebullición del agua en 100 partes iguales. Usted encontrará a veces esta escala identificada como escala centígrada. Las temperaturas en la escala Celsius son conocidas como grados Celsius (ºC).

Escala Fahrenheit

La escala Fahrenheit fue establecida por el físico holandés-alemán Gabriel Daniel Fahrenheit, en 1724. Aun cuando muchos países están usando ya la escala Celsius, la escala Fahrenheit es ampliamente usada en los Estados Unidos. Esta escala divide la diferencia entre los puntos de fusión y de ebullición del agua en 180 intervalos iguales. Las temperaturas en la escala Fahrenheit son conocidas como grados Fahrenheit (ºF).

Escala de Kelvin

La escala de Kelvin lleva el nombre de William Thompson Kelvin, un físico británico que la diseñó en 1848. Prolonga la escala Celsius hasta el cero absoluto, una temperatura hipotética caracterizada por una ausencia completa de energía calórica. Las temperaturas en esta escala son llamadas Kelvins (K).

Cómo Convertir Temperaturas

A veces hay que convertir la temperatura de una escala a otra. A continuación encontrará cómo hacer esto.
Temperature Scales, Calculator
  1. Para convertir de ºC a ºF use la fórmula:   ºF = ºC x 1.8 + 32.
  2. Para convertir de ºF a ºC use la fórmula:   ºC = (ºF-32) ÷ 1.8.
  3. Para convertir de K a ºC use la fórmula:   ºC = K – 273.15
  4. Para convertir de ºC a K use la fórmula: K = ºC + 273.15.
  5. Para convertir de ºF a K use la fórmula: K = 5/9 (ºF – 32) + 273.15.
  6. Para convertir de K a ºF use la fórmula:   ºF = 1.8(K – 273.15) + 32.

modelo cinetico molescular

Estado solido
Estado liquido
Estado gaseoso
predomina las fuerzas de cohesion sobre la repulsion.
las partículas solo pueden vibrar alrededor se su posición de equilibrio. 
las fuerzas de cohecion y rpulsionson del mismo orden.
las particulas pueden desplazarse con cierta libertad peros sin alejarse unas de otras.
por esta razon los liquidos tiene volumen y se adapta  la forma del recipiente 

predomina la fuerza de repulsion sobre las de cohecion.
las partículas se mueven con total libertad  y estan muy alejadas unas de otras por eso los gases tienen forma variable y tienden a ocupar todo el volumen disponible 

   
Para explicar el comportamiento de la materia y las características de los gases, los científicos propusieron, durante el siglo XIX, la denominada "teoría cinética de los gases". Su ampliación a líquidos y sólidos dio lugar al modelo cinético-molecular de la materia.
Este modelo se basa en dos postulados fundamentales.
La materia es discontinua, es decir, está formada por un gran nº de partículas separadas entre sí.
Estas partículas materiales se encuentran en constante movimiento debido a dos clases de fuerzas: de cohesión y de repulsión

que es el calor

El calor se define como la transferencia de energía térmica que se da entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintastemperaturas, sin embargo en termodinámica generalmente el término calor significa transferencia de energía. Este flujo de energía siempre ocurre desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura, ocurriendo la transferencia hasta que ambos cuerpos se encuentren en equilibrio térmico (ejemplo: una bebida fría dejada en una habitación se entibia).
La energía calórica o térmica puede ser transferida por diferentes mecanismos de transferencia, estos son la radiación, la conducción y la convección, aunque en la mayoría de los procesos reales todos se encuentran presentes en mayor o menor grado. Cabe resaltar que los cuerpos no tienen calor, sino energía térmica. La energía existe en varias formas. En este caso nos enfocamos en el calor, que es el proceso mediante el cual la energía se puede transferir de un sistema a otro como resultado de la diferencia de temperatura.

que es temperatura

La temperatura indica el grado de movimiento de las partículas de un cuerpo (Energía Cinética de las partículas)La unidad de medida establecida por el Sistema Internacional (SI) es el Kelvin (K). Sin embargo, se utiliza generalmente los grados Celsius (°C). El instrumento que se utiliza para medir la temperatura es el termómetro. Las tres escalas utilizadas son:

Escala Celsius

En esta escala, el grado 0 corresponde al punto donde el agua se solidifica y el grado 100 corresponde al punto de ebullición de la misma.

Escala Absoluta Kelvin

Esta escala fue creada por Lord Kelvin, quien encontró que existe un límite inferior de temperatura por debajo de la cual no pueden enfriarse los cuerpos. Es decir, la temperatura más baja posible. Este valor corresponde a -273,15°C y es denominado cero absoluto (0 K).
Matemáticamente, para expresar en Kelvin una temperatura dada en grados Celsius se emplea la siguiente formula

Escala Fahrenheit

En esta escala, el 0°C, corresponde a 32°F, y 100°C equivalen a 212°F. Para expresar en °C una temperatura entregada en °F se emplea la siguiente formula.
¿Qué es la Temperatura?

mutaciones

En genética se denomina mutación genéticamutación molecular o mutación puntual a los cambios que alteran la secuencia de nucleótidos del ADN. No se debe confundir con mutación génica, que se refiere a una mutación dentro de un gen. Estas mutaciones en la secuencia del ADN pueden llevar a la sustitución deaminoácidos en las proteínas resultantes. Un cambio en un solo aminoácido puede no ser importante si es conservativo y ocurre fuera del sitio activo de la proteína. De lo contrario puede tener consecuencias severas, como por ejemplo:
  • La sustitución de valina por ácido glutámico en la posición 6 de la cadena polipéptidica de la beta-globina da lugar a la enfermedad anemia de células falciformes en individuos homocigóticos debido a que la cadena modificada tiene tendencia a cristalizar a bajas concentraciones de oxígeno.
Las proteínas del colágeno constituyen una familia de moléculas estructuralmente relacionadas que son vitales para la integridad de muchos tejidos, incluidos los huesos y la piel. La molécula madura del colágeno está compuesta por 3 cadenas polipeptídicas unidas en una triple hélice. Las cadenas se asocian primero por su extremo C-terminal y luego se enroscan hacia el extremo N-terminal. Para lograr este plegado, las cadenas de colágeno tienen una estructura repetitiva de 3 aminoácidos: glicina - X - Y (X es generalmente prolina y Y puede ser cualquiera de un gran rango de aminoácidos). Una mutación puntual que cambie un solo aminoácido puede distorsionar la asociación de las cadenas por su extremo C-terminal evitando la formación de la triple hélice, lo que puede tener consecuencias severas. Una cadena mutante puede evitar la formación de la triple hélice, aún cuando haya 2 monómeros de tipo salvaje. Al no tratarse de una enzima, la pequeña cantidad de colágeno funcional producido no puede ser regulada. La consecuencia puede ser la condición dominante letal osteogénesis imperfecta.                            

                   juego mutaciones :http://www.juegosdiarios.com/juegos/bio-cage-2.htmlhttp://www.juegosdiarios.com/juegos/bio-cage-2.html

dogma central de la biologia molecular

La información genética está contenida en los genes, segmentos de ADN que llevan información para fabricar un producto funcional determinado. Nuestro genoma tiene aproximadamente 30.000 genes. Sólo una pequeña parte del genoma es codificante; la mayor parte corresponde a secuencias cortas móviles no codificantes o a secuencias regulatorias.
Para que la información pase de una molécula a otra, primero debe copiarse, en un proceso que se llama replicación y que ocurre en el núcleo. Pero como el ADN se encuentra en el núcleo y las proteínas son sintetizadas en el citoplasma, debe existir una molécula que funcione como intermediaria. Este papel lo cumple el ácido ribonucleico mensajero (ARNm). El ADN se copia en ARNm en el núcleo, en un proceso denominado transcripción. Luego la información contenida en el ARNm es empleada para construir proteínas en el proceso de traducción, que tiene lugar en el citoplasma.
Estos tres procesos secuenciales constituyen el llamado dogma central de la Biología, que establece que la información fluye desde el ADN al ARN y de este a las proteínas. (Además, las proteínas controlan el proceso de replicación del ADN uniéndose a una secuencia específica en el ADN. De esta manera pueden activar o inhibir la transcripción de un gen determinado.)

EXCEPCIONES AL DOGMA CENTRAL DE LA BIOLOGÍA (Que ya no lo es tanto...)
Normalmente, el dogma de la biología se cumple en los organismos más diversos, que guardan su información genética en forma de ADN, utilizan el ARN como intermediario y las proteínas como estructuras o maquinaria enzimática. Algunos virus y priones, sin embargo, rompen un poco este esquema.
  • Virus
  • Proteínas que se autorreplican: priones
Ciertos virus, como el de la inmunodeficiencia humana (VIH), guardan su información genética en forma de ARN y la duplican utilizando ADN (con la ayuda de enzimas denominadas transcriptasas reversas). Cuando estos agentes se introducen en una célula huésped convierten su ARN, de cadena simple, en ADN, de cadena doble, y este segmento se inserta en el genoma de la célula. El ADN modificado es transcripto por enzimas celulares y luego es traducido. Las proteínas generadas junto con el ARN viral, se ensamblan y forman una nueva partícula viral capaz de infectar nuevas células.

¿QUE ES EL ARN?

El ARN o Ácido Ribonucleico es una molécula que cumple una importante función al permitir copiar la información contenida en el ADN, trasportarla a las estructuras celulares encargadas de elaborar las distintas proteínas y formar además parte de la maquinaria en la que se lleva a cabo la producción de estas últimas.

A diferencia del ADN que es una molécula de doble cadena, el ARN tiene una sola cadena y tiene una molécula de ribosa en su composición la cual es responsable por su nombre. Existen tres tipos de ARN, cada uno con una función específica dentro de este proceso, ellos son:
ARN mensajero (ARNm). Esta molécula se origina al copiar un segmento del ADN que tiene la información para una determinada proteína, lo que se conoce como gen, cada ARNm tiene la información para una proteína específica y existen tantos ARNm como tipos de proteínas posibles. El ARNm puede ser descrito como una especie de molde o receta que contiene la información que especifica la forma en que deben colocarse los aminoácidos para poder así ir fabricando cada una de las distintas proteínas. El código contenido en esta molécula se encuentra escrito solo con cuatro bases o nucleótidos (adenina, uracilo, guanina y citosina) que se agrupan de tres en tres formando los tripletes, que son las unidades de información genética también llamado código genético.


¿QUE ES EL ADN?



El ácido desoxirribonucleico, abreviado como ADN, es un ácido
nucleico que contiene las instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. La función principal de la molécula de ADN es el almacenamiento a largo plazo de información .Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas de ARN. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética.
Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C o guanina→G) y un grupofosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno

Enfermedades Sistema Endocrino

Su sistema endocrino incluye ocho glándulas principales distribuidas por todo el cuerpo. Estas glándulas producen hormonas. Las hormonas son mensajeros químicos. Viajan a través del torrente sanguíneo hacia los tejidos y órganos. Las hormonas trabajan lentamente y afectan los procesos corporales desde la cabeza hasta los pies. Entre esos procesos se encuentran:
  • Crecimiento y desarrollo
  • Metabolismo: digestión, eliminación, respiración, circulación sanguínea y mantenimiento de la temperatura corporal
  • Función sexual
  • Reproducción
  • Estado de ánimo
Si los niveles hormonales están demasiado elevados o disminuidos, es posible que tenga un trastorno hormonal. Las enfermedades hormonales también ocurren si el cuerpo no responde a las hormonas como debería hacerlo. El estrés, las infecciones y los cambios en el equilibrio de líquidos y electrolitos de la sangre también pueden afectar los niveles hormonales.
a enfermedad endocrina más común es la diabetes. Existen muchas otras. El tratamiento suele consistir en controlar la cantidad de hormonas que produce el organismo. Si el problema es la falta de niveles suficientes de hormonas, los suplementos hormonales pueden ayudar.

sistema endocrino

El sistema endocrino o también llamado sistema de glándulas de secreción interna es el conjunto de órganos y tejidos del organismo, que segregan un tipo de sustancias llamadas hormonas, que son liberadas al torrente sanguíneo y regulan algunas de las funciones del cuerpo. Es un sistema de señales similar al delsistema nervioso, pero en este caso, en lugar de utilizar impulsos eléctricos a distancia, funciona exclusivamente por medio de sustancias (señales químicas). Las hormonas regulan muchas funciones en los organismos, incluyendo entre otras el estado de ánimo, el crecimiento, la función de los tejidos y el metabolismo, por células especializadas y glándulas endocrinas. Actúa como una red de comunicación celular que responde a los estímulos liberando hormonas y es el encargado de diversas funciones metabólicas del organismo.